Project work NANOFLAKES Interactions with surfaces 134 . 114 Anna
نویسندگان
چکیده
منابع مشابه
Hierarchical structures of AlOOH nanoflakes nested on Si nanopillars with anti-reflectance and superhydrophobicity.
A novel method to fabricate ultra-low reflective Si surfaces with nanoscale hierarchical structures is developed by the combination of AlOOH or boehmite nanoflakes nested on plasma-etched Si nanopillars. Using CF4 plasma etching, Si surfaces are nanostructured with pillar-like structures by selective etching with self-masking by fluorocarbon residues. AlOOH nanoflakes are formed by Al thin film...
متن کاملStructural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)
We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that th...
متن کاملOptical response and gas sequestration properties of metal cluster supported graphene nanoflakes.
The possibility of obtaining metal cluster (M3O(+), M = Li, Na, K) supported pristine, B-doped and BN-doped graphene nanoflakes (GR, BGR and BNGR, respectively) has been investigated by carrying out density functional theory (DFT) based calculations. Thermochemical analysis reveals the good stability of M3O(+)@GR/BGR/BNGR moieties. The dynamic stability of M3O(+)@GR/BGR/BNGR moieties is confirm...
متن کاملEnhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes
Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma trea...
متن کاملInvestigations on the structural, electrical properties and conduction mechanism of CuO nanoflakes
Copper oxide (CuO) nanostructures are of particular interest because of their interesting properties and promising applications in batteries, super capacitors, solar cells, gas sensors, bio sensors, nano fluids and catalysis. In Recent past, more efforts have been received to design materials with different properties which is dependent on morphology. In this work cupric oxide nano flakes were...
متن کامل